OpenAI Cookbook
Sources: https://github.com/openai/openai-cookbook, OpenAI
Seeded from: OpenAI Examples and guides for working with OpenAI APIs. Read more: https://github.com/openai/openai-cookbook
More resources
CUDA Toolkit 13.0 pour Jetson Thor : Écosystème Arm Unifié et Plus
Kit CUDA unifié pour Arm sur Jetson Thor avec cohérence mémoire complète, partage du GPU entre processus, interop OpenRM/dmabuf, support NUMA et outils améliorés pour l’embarqué et le serveur.
Réduire les coûts de déploiement des modèles tout en conservant les performances grâce au swap de mémoire GPU
Exploitez le swap mémoire GPU (hot-swapping de modèles) pour partager les GPUs entre plusieurs LLM, réduire les coûts inoccupés et améliorer l’auto-Scaling tout en respectant les SLA.
Amélioration de l’auto-tuning GEMM avec nvMatmulHeuristics dans CUTLASS 4.2
Présente nvMatmulHeuristics pour sélectionner rapidement un petit ensemble de configurations de kernels GEMM à fort potentiel pour CUTLASS 4.2, réduisant considérablement le temps de tuning tout en approchant les performances d’une Recherche Exhaustive.
Accélérez ZeroGPU Spaces avec la compilation ahead-of-time (AoT) de PyTorch
Découvrez comment la compilation AoT de PyTorch accélère ZeroGPU Spaces en exportant un modèle compilé et en le rechargeant instantanément, avec quantification FP8, formes dynamiques et intégration au flux Spaces GPU.
Fine-Tuning gpt-oss pour la précision et les performances avec l’entraînement par quantisation (QAT)
Guide du fine-tuning de gpt-oss utilisant SFT + QAT pour récupérer la précision FP4 tout en préservant l’efficacité, avec upcast vers BF16, MXFP4, NVFP4 et déploiement avec TensorRT-LLM.
Comment les petits modèles linguistiques contribuent à une IA agentique évolutive
Explique comment les petits modèles linguistiques permettent une IA agentique plus rentable et flexible, aux côtés des LLMs, via NVIDIA NeMo et Nemotron Nano 2.